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Abstract

The Kernel Adaptive Filtering Toolbox is a benchmarking toolbox to evaluate
and compare kernel adaptive filtering algorithms in Matlab. Kernel adaptive
filtering algorithms are online techniques suitable for nonlinear filtering, pre-
diction, tracking and regression. This toolbox contains implementations of all
major kernel adaptive filtering algorithms, and tools to measure and compare
the performance, memory usage, speed and other variables.
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Chapter 1

Introduction

This document is a work in progress.

1.1 Goals of the toolbox

The goals of this toolbox are twofold:

1. To provide a repository for Matlab implementations of kernel adaptive
filtering algorithms;

2. To provide tools that allow to compare all aspects of the different algo-
rithms

A list of the included algorithms and tools can be found in Chapter 5.
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Chapter 2

First use

2.1 Installation

1. Download the toolbox and run the installation.m file in the root
folder.

2. Type savepath to save the changes to the path.

2.2 Directories included in the toolbox

• data/ contains data sets.

• demo/ contains demos and test files.

• lib/ contains the algorithm libraries and utilities.

2.3 Octave / Matlab pre-2008a

This toolbox uses the classdef command which is not supported in Matlab
pre-2008a and not yet in Octave. The older 0.x versions of this toolbox do not
use classdef and can therefore be used with all versions of Matlab and Octave.
http://sourceforge.net/projects/kafbox/files/
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Chapter 3

Kernel adaptive filtering

3.1 Framework for online kernel methods

Online learning methods update their solution iteratively. In the standard online
learning framework, each iteration consists of several trials [Wik14]. During the
n-th iteration:

1. The algorithm first receives an input datum, xn;

2. Then, it calculates the estimated output ŷn corresponding to this datum.

3. The true outcome yn is made available shortly thereafter, which enables
the algorithm to calculate the loss L(·) incurred on the data pair (xn, yn);

4. Finally, the solution is updated.

A typical setup for online system identification with a kernel-based method
is depicted in Fig. 3.1. It represents an unknown nonlinear system, whose
input data xn and response yn (including additive noise rn) can be measured
at different time steps, and an adaptive kernel-based algorithm, which is used
to identify the system’s response.

Online algorithms should be capable of operating during extended periods
of time, processing large amounts of data. Kernel methods rely on a functional
representation that grows as the amount of observations increases. A näıve
implementation of an online kernel method will therefore require growing com-
putational resources during operation, leading to performance issues once the
available memory is insufficient to store the training data or once the compu-
tations for one update take more time than the interval between incoming data
[KSW04].

3.2 Kernel adaptive filtering algorithms

Kernel adaptive filtering algorithms are online regression algorithms. While
early kernel adaptive filtering algorithms had a clear connection to classical
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Figure 3.1: Kernel-based adaptive system identification. Figure adapted from
[PBRT12].

adaptive filters, such as LMS, RLS and KAPA filters, later implementations
explored Gaussian Process and projections based algorithms.

The different kernel adaptive filtering algorithms proposed in the literature
vary in several aspects:

• The type of filter they relate to: typically LMS, RLS or KAPA;

• The computational complexity w.r.t. the amount of elements in memory,
M : typically O(M) or O(M2);

• The approach to building a sparse dictionary and to possible prune data
from it afterwards;

• The convergence speed;

• The ability to employ multiple kernels and learn their respective weights.

The algorithm profiler described in Chapter 4 allows to compare these different
aspects empirically.

3.3 Algorithm code structure

Since all algorithms share the same structure, they are coded in a common
framework. In particular:

• Each algorithm is contained in a single file in the /lib folder.

• Each algorithm is implemented as an object in matlab, using the classdef
syntax.

5



• Each algorithm has two basic public methods: evaluate and train.
The object code contains only one iteration of the algorithm. The for-
loop over the time index that governs the online operation should go in
an external script.

Furthermore, efforts are made to make the code

1. As human-readable as possible, in the first place;

2. Short and structured, in the second place.

As far as possible, algorithm structure should follow the pseudocode from
the corresponding publication. And, finally, the following best practices for
scientific computing are taken into account [WAB+14]:

• Variable naming should correspond to the nomenclature used in the cor-
responding publication whenever possible;

• Comments should be used sparingly. Document the design and purpose
of the code rather than its mechanics.

3.4 Template for kernel adaptive filtering algo-

rithms

1 % This is the template used for kernel adaptive filtering algorithms in

2 % the kernel adaptive filtering toolbox. [Delete this line.]

3 %

4 % [The name of the algorithm goes here]

5 %

6 % [A reference to the original publication of the algorithm goes here,

7 % including a link to its DOI url: http://dx.doi.org/xxx]

8 %

9 % This file is part of the Kernel Adaptive Filtering Toolbox for Matlab.

10 % http://sourceforge.net/projects/kafbox/

11

12 classdef kafbox_template

13

14 properties (GetAccess = ’public’, SetAccess = ’private’) % parameters

15 param1 = 1;

16 param2 = 2;

17 kerneltype = ’gauss’; % kernel type

18 kernelpar = 1; % kernel parameter

19 end

20

21 properties (GetAccess = ’public’, SetAccess = ’private’) % variables

22 dict = []; % dictionary

23 alpha = []; % expansion coefficients

24 end

25

26 methods

27

28 function kaf = kafbox_template(parameters) % constructor
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29 if (nargin > 0) % copy valid parameters

30 for fn = fieldnames(parameters)’,

31 if strmatch(fn,fieldnames(kaf),’exact’),

32 kaf.(fn{1}) = parameters.(fn{1});

33 end

34 end

35 end

36 end

37

38 function y_est = evaluate(kaf,x) % evaluate the algorithm

39 if size(kaf.dict,1)>0

40 k = kernel(kaf.dict,x,kaf.kerneltype,kaf.kernelpar);

41 y_est = k’*kaf.alpha;

42 else

43 y_est = zeros(size(x,1),1);

44 end

45 end

46

47 function kaf = train(kaf,x,y) % train the algorithm

48 if size(kaf.dict,2)==0 % initialize

49 kaf.dict = x;

50 kaf.alpha = 0;

51 else

52

53 % [main algorithm training goes here]

54

55 % [example of a helper function]

56 z = kaf.helper1(x,y);

57 end

58

59 end

60

61 end

62

63 methods (Static = true) % [helper functions go here]

64

65 function z = helper1(x,y)

66 z = x*y;

67 % operations

68 end

69

70 end

71 end

3.5 Performing online learning

Each kernel adaptive filtering algorithm is implemented as a Matlab class. To
perform online learning with an algorithm, first define its options:

options = struct(’nu’,1E-4,’kerneltype’,’gauss’,’kernelpar’,32);

Next, create an instance of the filter. E.g., for an instance of the KRLS algorithm
that uses the ALD criterion run:

kaf = aldkrls(options);
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One iteration of training is performed by feeding one input-output data pair to
the filter:

kaf = kaf.train(x,y);

The outputs for one or more test inputs are evaluated as follows:

Y_test = kaf.evaluate(X_test);

3.6 Example learning script: time-series predic-

tion

1 % 1-step ahead prediction on Lorenz attractor time-series data

2 %

3 % This file is part of the Kernel Adaptive Filtering Toolbox for Matlab.

4 % http://sourceforge.net/projects/kafbox/

5

6 [X,Y] = kafbox_data(struct(’file’,’lorenz.dat’,’embedding’,6));

7

8 % make a kernel adaptive filter object of class aldkrls with options:

9 % ALD threshold 1E-4, Gaussian kernel, and kernel width 32

10 kaf = aldkrls(struct(’nu’,1E-4,’kerneltype’,’gauss’,’kernelpar’,32));

11

12 %% RUN ALGORITHM

13 N = size(X,1);

14 Y_est = zeros(N,1);

15 for i=1:N,

16 if ˜mod(i,floor(N/10)), fprintf(’.’); end % progress indicator, 10 dots

17 Y_est(i) = kaf.evaluate(X(i,:)); % predict the next output

18 kaf = kaf.train(X(i,:),Y(i)); % train with one input-output pair

19 end

20 fprintf(’\n’);

21 SE = (Y-Y_est).ˆ2; % test error

22

23 %% OUTPUT

24 fprintf(’MSE after first 1000 samples: %.2fdB\n\n’,10*log10(mean(SE(1001:end))));
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Chapter 4

Algorithm profiler

The algorithm profiler is a tool that allows to compare the trade-off between
cost and performance between several algorithm configurations and/or several
algorithms.

A demo configuration script is given in the file
demo/demo_profiler_prediction_lorenz.m.

9



Chapter 5

List of included algorithms

Matlab implementations of the following algorithms are included in the toolbox:

• Approximate Linear Dependency Kernel Recursive Least-Squares (ALD-
KRLS) [EMM04].

• Sliding-Window Kernel Recursive Least-Squares (SW-KRLS) [VVVS06].

• Naive Online Regularized Risk Minimization Algorithm (NORMA) [KSW04].

• Kernel Least-Mean-Square (KLMS) [LPP08].

• Fixed-Budget Kernel Recursive Least-Squares (FB-KRLS) [VVSLP10].

• Kernel Recursive Least-Squares Tracker (KRLS-T) [VVLGS12].

• Quantized Kernel Least Mean Squares (QKLMS) [CZZP12].

• Random Fourier Feature Kernel Least Mean Square (RFF-KLMS) algo-
rithm [SAM12].

• Extended Kernel Recursive Least Squares (EX-KRLS) [LPWP09].

• Gaussian-Process based estimation of the parameters of KRLS-T [VVSLG12].

• Kernel Affine Projection (KAP) algorithmwith Coherence Criterion [RBH09].

• Kernel Normalized Least-Mean-Square (KNLMS) algorithm with Coher-
ence Criterion [RBH09].

• Recursive Least-Squares algorithmwith exponential weighting (RLS) [Say03].

• Multikernel Normalized Least Mean Square algorithm with Coherence-
based Sparsification (MKNLMS-CS) [Yuk12].

• Parallel HYperslab Projection along Affine SubSpace (PHYPASS) algo-
rithm [TY13].
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• Fixed-budget kernel least mean squares (FB-KLMS) algorithm [Rze12].

• Leaky Kernel Affine Projection Algorithm (LKAPA, including KAPA-1
and KAPA-3) and Normalized Leaky Kernel Affine Projection Algorithm
(NLKAPA, including KAPA-2 and KAPA-4) [LPP08].

• Kernel Affine Projection Subgradient Method (KAPSM) [STY08].

• Kernel Least Mean Squares algorithm with Coherence-Sparsification crite-
rion and L1-norm regularization (KLMS-CSL1) and with active L1-norm
regularization (KLMS-CSAL1) [GCR+13].

• Mixture Kernel Least Mean Square (MxKLMS) algorithm [PSP13].
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Chapter 6

About

• Name: Kernel Adaptive Filtering Toolbox

• Abbreviation: KAFBOX

• Punchline: a Matlab benchmarking toolbox for kernel adaptive filtering

• Author: Steven Van Vaerenbergh

– Homepage: http://gtas.unican.es/people/steven/

– Email: steven@gtas.dicom.unican.es

– Affiliation: Advanced Signal Processing Group, Department of Com-
munications Engineering, University of Cantabria, Spain.

• Collaborators: Miguel Lazaro-Gredilla, Sohan Seth, Masahiro Yukawa,
Masa-aki Takizawa, Osamu Toda, Dominik Rzepka, Pantelis Bouboulis

• URL: https://github.com/steven2358/kafbox

• Citing: Published reports of research using this code (or a modified ver-
sion) should cite [VVS13].

• Environments: Matlab1.

• Origin: KAFBOX is a fork of Kernel Methods Toolbox (KMBOX) v0.6
(http://sourceforge.net/p/kmbox/)

• Extending the code: Template files are provided to encourage external
authors to include their own code into the toolbox. Contributions can be
made through Github’s fork and pull system.

• License: FreeBSD

1http://www.mathworks.com/products/matlab/

12



Bibliography

[CZZP12] Badong Chen, Songlin Zhao, Pingping Zhu, and José C. Pŕıncipe.
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